Capturing Light Probes in the Sun

Paul Debevec USC ICT www.debevec.org/IBL2003

Guggenheim Museum, Bilbao

Shoot Light Probe

Can we recover the sun?

- Radius $=695,000 \mathrm{~km}$
- Distance $=149,600,000 \mathrm{~km}$
- => 0.5323 degrees in diameter seen from earth
- $=0.00465$ radians in radius
- $=>1 / 0.00465^{2}=$
sun is 46,334 times brighter than "white"

How bright is the sun?

Shoot Diffuse Sphere

Even better: paint the back of the mirror sphere gray and just turn it around

Scale Probe Image to account for less-than-100\% Reflectance of the Sphere

Calibrate Lens Transmission Ratios

Diffuse white light at $160 \mathrm{~cd} / \mathrm{m}^{\wedge} 2$ or 50 footlamberts

8 mm 24 mm

200 mm $f / 11,1 / 60^{\text {th }}$ sec $\quad f / 11,1 / 60^{\text {th }}$ sec $\quad f / 11,1 / 60^{\text {th }}$ sec $(1.43,1.54,1.30) \quad(1.73,1.88,1.52) \quad(1.22,1.34,1.10)$
For better accuracy, should perform this measurement across entire field of view to obtain each lens's flat field response

Crop Diffuse and Probe Images

Convert Gray Sphere into a White Sphere using Reflectivity of Paint

Determine Sun Position in Probe

Create a Unit Sun Source

```
# unitsun.rad
void light suncolor
0
0
3463344633446334
# Sun intensity chosen to light
# white diffuse surface at (1,1,1)
suncolor source sun
0
40.7480.1990.6330.5323
# Sun subtended angle = 0.5323 deg.
    RADIANCE file for unit sun
40.7480 .1990 .6330 .5323
\# Sun subtended angle \(=0.5323 \mathrm{deg}\).
RADIANCE file for unit sun
```


Create Probe Lighting Environment

```
# Light Probe Environment probe.rad
void colorpict lightprobe
7 red green blue probe.hdr spheremap.cal u v
O
lightprobe glow lightprobeglow
0
O
lightprobeglow source sky
0
0
4010360
```

RADIANCE file for light probe

Adjust Sun Intensity

```
# sun.rad
void light suncolor
|
35400645083 32464
# obtained sun intensity as:
# 46334*(1.165581,0.972998,0.700642)
suncolor source sun
0
0
40.748185858 0.1987933440.633008
0.5323
```

Subtract incomplete probe from both sides to obtain: α

Diffuse Ball

Then solve for $\alpha=(1.166,0.973,0.701)$

Verify composite probe matches diffuse ball

Lit with Sun

Real Diffuse
Avg. Error ($0.5 \%, 0.3 \%, 0.2 \%) \quad$ RMS Error $=(2.2 \%, 1.8 \%, 1.3 \%)$

Paul Debevec / SIGGRAPH 2003

Divide background plate by irradiance to produce local scene texture map

- Reflectance = radiance / irradiance

pcomb -e 'ro=0.5* $\mathrm{ri}(1) / \mathrm{ri}(2) ; \mathrm{go}=0.5^{*} \mathrm{gi}(1) / \mathrm{gi}(2) ; \mathrm{bo}=0.5^{*} \mathrm{bi}(1) / \mathrm{bi}(2)^{\prime}$ back.hdr local.hdr > localref.hdr

Paul Debevec / SIGGRAPH 2003

Thanks!

- Andreas Wenger - CRW converter
- Chris Tchou - HDRShop features
- Greg Ward - Radiance renderer
- Teddy Kim - Probe assistance
- Maya Martinez - Rendering composition
- ICT Graphics Lab - Presentation comments
http://www.debevec.org/IBL2003/

